In Search of Non-Gaussian Components of a High-Dimensional Distribution

نویسندگان

  • Gilles Blanchard
  • Motoaki Kawanabe
  • Masashi Sugiyama
  • Vladimir G. Spokoiny
  • Klaus-Robert Müller
چکیده

Finding non-Gaussian components of high-dimensional data is an important preprocessing step for efficient information processing. This article proposes a new linear method to identify the “nonGaussian subspace” within a very general semi-parametric framework. Our proposed method, called NGCA (non-Gaussian component analysis), is based on a linear operator which, to any arbitrary nonlinear (smooth) function, associates a vector belonging to the low dimensional nonGaussian target subspace, up to an estimation error. By applying this operator to a family of different nonlinear functions, one obtains a family of different vectors lying in a vicinity of the target space. As a final step, the target space itself is estimated by applying PCA to this family of vectors. We show that this procedure is consistent in the sense that the estimaton error tends to zero at a parametric rate, uniformly over the family, Numerical examples demonstrate the usefulness of our method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A harmony search-based approach for real-time volt & var control in distribution network by considering distributed generations units

In recent decade, development of telecommunications infrastructure has led to rapid exchange of data between the distribution network components and the control center in many developed countries. These changes, considering the numerous benefits of the Distributed Generators (DGs), have made more motivations for distribution companies to utilize these kinds of generators more than ever before. ...

متن کامل

Application of Non-Linear Functions at Distribution of Output SINR Gaussian Interference Channels

We have examined the convergence behavior of the LSCMA in some simple environments. Algorithms such as Multi¬ Target CMA, Multistage CMA, and Iterative Least Squares with Projection can be used for this purpose. The results presented here can form a basis for analysis of these multi-signal extraction techniques. Clearly, the variance and distribution of output SINR obtained with the LSCMA is al...

متن کامل

Iterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem

An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...

متن کامل

Analytical Solutions for Spatially Variable Transport-Dispersion of Non-Conservative Pollutants

Analytical solutions have been obtained for both conservative and non-conservative forms of one-dimensional transport and transport-dispersion equations applicable for pollution as a result of a non-conservative pollutant-disposal in an open channel with linear spatially varying transport velocity and nonlinear spatially varying dispersion coefficient on account of a steady unpolluted lateral i...

متن کامل

تعیین ماشین‌های بردار پشتیبان بهینه در طبقه‌بندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک

Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...

متن کامل

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2006